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ABSTRACT

The main objective of this project was to derive digital land use and land cover information from satellite remote
sensing data for Connecticut, Long Island, and those watersheds contributing to Long Island Sound. In doing so,
four methods of land use and land cover classification were evaluated on two test quadrangles to determine which
method was best suited, in terms of time and costs balanced with spatial and thematic accuracy. These four
methods are: a single date Landsat Thematic Mapper (TM) computer-assisted classification, a TM/SPOT
panchromatic image fusion and automated classification, a TM classification combined with on-screen digitization
of SPOT panchromatic data, and a TM classification combined with on-screen digitization of Digital Orthophoto
Quarter-Quadrangles (DOQQs). For Connecticut statewide land cover mapping, a layered approach was used, with
each stage concentrating on a related set of land cover types. Twenty-eight detailed land use and land cover classes
were mapped with an overall accuracy of nearly 80%. An accuracy of better than 88% was achieved for the six
Level I categories found in Connecticut.

INTRODUCTION

In 1990, under a grant from the Joint Long Island Sound Study (LISS) of the Connecticut Department of
Environmental Protection and the United States Environmental Protection Agency, land cover maps of the state of
Connecticut were prepared by scientists from the University of Connecticut's Laboratory for Earth Resources
Information Systems (LERIS) through computer-assisted analysis of satellite digital remote sensing data. Land
cover information was extracted from multiseasonal Landsat Thematic Mapper (TM) and Multispectral Scanner
(MSS) for 23 land cover types (Civco and Hurd, 1991; Civco et al., 1992). The accuracy of these data has proven
to be adequate for the initial purposes for which they were intended, i.e., area-wide nonpoint pollution modeling
using land use-dependent coefficients (Frink et al., 1993). The quality of the information has been confirmed both
spatially and thematically in comparison with land cover maps developed through conventional aerial
photointerpretation in border quadrangles with Massachusetts. However, categories of urban and suburban land
cover, particularly low density development, were found to be some of the least accurate, yet most essential
categories for the development of nonpoint load estimates (Computing Solutions, Inc., 1993). Urban regions have
been found to be a major source of nutrients to rivers, lakes, and estuaries. It became apparent that it was necessary
to develop a procedure to create a new land cover map which better identifies the densities of urban areas,
particularly low density developed areas and provide an up-to-date map for the state of Connecticut.

Research to improve upon the thematic depth and accuracy of satellite imagery has been conducted by investigators
at the LERIS. Investigations have resulted in the development of innovative techniques for extracting land cover
information from remote sensing and ancillary data (Wang and Civco, 1992a; Wang and Civco, 1992b; Wang and
Civco, 1994; Civco et al., 1995). This has proven essential in order to characterize better the degree of
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urbanization, with particular relevance to the identification of low-density development and estimates of
impervious cover. Techniques have been developed to improve the spatial sensitivity of 30 meter Landsat TM
multispectral data by merging them with 10 meter SPOT panchromatic imagery (Civco et al., 1995; Zhou and
Civco, 1998). In theory, the merging of these two data types provides the opportunity to create more spatially
accurate and detailed land cover maps while still maintaining a high degree of automation to the classification
procedure. Another innovative technique has been the development of a paradigm for the quantification of per-
pixel percent impervious surface cover from TM data. This model uses neural networks to predict the percentage of
imperviousness for each 30 meter TM pixel in a study area (Civco and Hurd, 1997).

To evaluate best how these image enhancement techniques would perform for classification over a large area, four
methods of classification were selected for comparison. These methods were chosen to take advantage of improved
spatial image data available in the form of SPOT panchromatic images and DOQQ's (Digital Orthophoto Quarter-
Quadrangles):

1. A multi-season spring/summer Landsat TM computer-assisted classification.
2. A fused Landsat TM and Spot panchromatic image computer-assisted classification.
3. On-screen digitizing of SPOT panchromatic images to highlight urban regions followed by a merging

with a Landsat TM classification.
4. On-screen digitizing of DOQQs  to highlight urban regions followed by a merging with a Landsat

TM classification.

EVALUATION OF CLASSIFICATION TECHNIQUES

Study Areas and Data

 The four classification techniques were evaluated on two USGS 7
1/2

-minute topographic quadrangles prior to
statewide implementation to determine which method would be best suited for statewide classification. These study
areas were the Essex quadrangle located in the neo-coastal region of Connecticut and the West Torrington
quadrangle located in the northwest hills of Connecticut (Figure 1). The Essex quadrangle contains an abundance
of estuarine marshes, inland wetlands, residential and commercial development of varying densities, and forest
land. The West Torrington quadrangle contains sizable areas of residential and commercial development, forest
land, wetlands, and agriculture. In addition, the West Torrington quadrangle contains areas of substantial relief
ranging in elevation from approximately 600 feet to 1600 feet. Studying this type of terrain is important for
evaluating the effect of topography on each of the data types and classification methods in terms of geometric
properties and thematic accuracy.

For this evaluation, three types of remote sensing image data were used as sources for land use and land cover
mapping. Landsat TM image data served as the basis for land cover mapping in all four methods. Although
lacking a high degree of spatial resolution compared to other remote sensing products, the TM possesses higher
multispectral resolution, thereby enabling improved distinction among many cover types. This makes TM data a
more effective source of remote sensing information for the classification of large geographic areas such as
Connecticut and the Long Island Sound watershed area.

The SPOT panchromatic image data were used for two purposes. First, the SPOT data fused with the TM data to
improve the spatial properties of the TM data. Thematic Mapper data possess moderately high multispectral
resolution enabling improved distinction among cover types, whereas SPOT panchromatic data possess moderately
high spatial resolution, enabling discrimination at a finer level of detail. This finer level of detail would, therefore,
allow for the identification of lower density residential areas, isolated buildings, and other small land cover
features which may be indicative of a land use contributing the the degradation of water quality. Together, the
fused TM-SPOT data would maximize the accuracy and precision of the land use and land cover map. A refined
data merging techniques based on principal component analysis (Civco et.al., 1995) and another based on the
wavelet transformation (Zhou and Civco, 1998) were used to render a high quality TM-SPOT fusion. A second use
of the SPOT data was for on-screen digitizing of primarily urban areas. This visual interpretation was performed to
enhance detailed information of interest which is not discernible using automated techniques.



Figure 1. Locations of the West Torrington and Essex 71/2 minute quadrangles in Connecticut. Landsat TM data
are shown in Bands 4,5, and 3 for both spring (leaf off) and summer (full leaf). SPOT Panchromatic
data are shown in grayscale.

The DOQQs were also used for on-screen digitizing of primarily urban areas. The one-meter spatial resolution of
the DOQQs allows for easier interpretation of land use and land cover features than with 10-meter SPOT
panchromatic data. Figure 2 provides a visual contrast among the spatial properties of Landsat TM, SPOT
panchromatic, and DOQQ images for an area within Torrington, Connecticut.

Classification Methodology

Multi-season TM Classification. Land cover mapping of the West Torrington and Essex quadrangles began
with an unsupervised classification of a single date (May 8, 1995) Landsat TM image for each quadrangle. It
became evident that a single season TM image would not satisfactorily separate some land cover types of interest,
especially coastal marsh categories which showed considerable confusion with deciduous forests in the springtime
classification. Multi-seasonal imagery has been found to be a superior source for classification than single season
images because it provides greater spectral depth due to the phenological differences between (Civco and Hurd,
1991; Fuller et al., 1994; Dobson et al., 1995). Unsupervised classification was applied to a multi-seasonal (May 8,
1995/August 28, 1995), 12-band image to produce 100 classes. These spectral clusters were identified and labeled
into informational land cover categories. Supervised training signatures were then selected to augment the classes
derived from the unsupervised classification. The signatures from both the unsupervised and supervised techniques
were evaluated and a new set of signatures was developed by merging and appending appropriate signatures from



both techniques. These signatures were used in a maximum likelihood classification to derive the final multi-
seasonal classification.

30 meter Landsat TM 1 meter  DOQQ  10 meter SPOT panchromatic

Figure 2. Image comparison of Landsat TM (Band 4), SPOT Panchromatic, and DOQQ data for an area in
Torrington, CT.

TM/SPOT Fused Classification The first step in this method of classification was to fuse, or spatially enhance, the
TM image with the SPOT panchromatic image. Two methods for resolution enhancement were examined in this
project. These are the Brovey Transform and an inverse principal components technique. The latter technique was
found to produce a better quality image and was therefore adopted for this project (see Figure 3 for an example). In
the inverse principal components technique, the 30 meter TM data are resampled to 10 meter pixels and co-
registered with the 10-meter SPOT image data. The synthesized 10-meter TM multispectral data are then
transformed into principal components (PC). The brightness properties of the co-registered SPOT panchromatic
data are matched to the first PC (PC1), which is an overall brightness image of the original data and is then
substituted for PC1. Inverse PCA is then applied to project the data back into original Thematic Mapper spectral
space which essentially results in a 10 meter Thematic Mapper image. Further detail on TM-SPOT data fusion can
be found in Civco et al. (1995) and Zhou and Civco (1998). Unsupervised classification was applied to this image
resulting in 200 classes. These were identified and labelled. Supervised signature selection was also performed and
evaluated with those signatures from the unsupervised approach. Those signatures determined to provide the best
classification were selected and a maximum likelihood classification was performed to produce a final
classification image.

SPOT On-screen Digitizing. The first task with on-screen digitizing of the SPOT image was to determine what
areas were to be digitized since it is not feasible to interpret visually and digitize manually the entire state of
Connecticut. For this purpose, road coverages and sewered areas were used to determine likely target areas for on-
screen digitizing. High densities of road networks and sewered areas are indicative of an urbanized environment.
Once these target areas were identified, they were compared with the multi-seasonal TM classification to determine
if digitization was necessary (i.e., did the TM classification alone produce enough detail for a particular urban
area?). In those cases where digitization was necessary, the SPOT image was displayed on-screen and the areas of
interest digitized. The land cover features were digitized into the following categories: High Density Industrial,
Medium Density Industrial, High Density Commercial, Medium Density Commercial, Low Density Commercial,
High Density Residential, Medium Density Residential, Low Density Residential, Turf & Grass, Turf & Tree
Complex, Forest, Water, and Bare/Exposed Ground.  The distinction among the different density groups is
somewhat arbitrary and based strictly on visual interpretation. A high density area is roughly composed of over 90
percent roof and pavement, a medium density area is between 50 to 90 percent roof and pavement, a low density
area falls below 50 percent roof and pavement. Once the digitization was complete, it was merged with the multi-
seasonal TM classification to produce a seamless composite of land use and land cover information derived from
different sources.   



TM SPOT Fused SPOT-TM

Figure 3. Example of 30 meter TM data (Bands 4, 5, 3) fused with 10 meter SPOT Panchromatic data.

DOQ On-screen Digitizing. The same procedure was used with the DOQQ data as was used with the SPOT image.
Land cover features were digitized into the same categories as used in the SPOT on-screen digitizing. Once the
digitization was complete, it was joined with the multi-seasonal TM classification to produce a seamless composite
of land use and land cover derived from different data sources.

Discussion

The multi-seasonal TM classification produced visually appealing results. However, as with the previous 1990
statewide  land use and land cover mapping project, urban and built-up lands were not adequately classified and
delineated, even though classification focused more on these land cover features than was done with the 1990
mapping project. The 30 meter resolution of the TM sensor, coupled with the aspatial, per-pixel classifier, is not
fine enough to detect consistantly the low density urban features that are of importance.

The TM/SPOT fusion classification provided a vast improvement in the ability to detect visually isolated built-up
areas compared to the TM classification, and is therefore better suited for detecting lower density built-up areas.
However, this improved spatial detail results in   a more sizable and complex image dataset. This complexity can
be managed, in terms of classification, at the quadrangle level, but would become inherently difficult to classify
accurately at the statewide level due to the complexity of the landscape. This would result in an increase in the
number of classification training signatures required for each category, thereby adding to the potential for
misclassification. In addition, the spectral and radiometric difference between the numerous SPOT scenes needed
to cover the state would also add to the need for additional category training signatures.

While only attempted in a small area, using SPOT data for on-screen digitizing was found to be difficult. This was
due to two reasons. First, the SPOT image is not spatially detailed enough in some areas of the urban environment
to allow for easy discrimination among the different types of land cover being digitized. It is difficult to distinguish
a boundary between an industrial use to a commercial use to a residential use. Second, it is difficult to determine
objectively and consistently the areal extent to which an urban area should be digitized. Even through the use of
the roads and sewered area coverages, isolated urbanized areas are missed, especially the rural residential and low
density urban areas which are a major category of interest in this project. Further, these ancillary data predate the
satellite images by as many as 12 years in Connecticut, thereby introducing substantial temporal disparity.



Lastly, the DOQQ data, while providing an excellent source of imagery for digitizing, proved to be too much data
to handle. Each quarter quadrangle is approximately 45 megabytes in size resulting in one quadrangle consisting
of 180 megabytes of data. Connecticut alone requires 116 quadrangles for complete coverage resulting in
approximately 21 gigabytes of storage. This volume of data poses substantial logistical problems in attempting to
use them in the way intended (i.e., on-screen digitizing and merging with satellite derived thematic information).
Therefore, the DOQ data was used in a supporting role as opposed to a source of classification.

The final result of this evaluation of the four classification techniques methods tested on the West Torrington and
Essex quadrangles was the development of a hierarchical approach to land use and land cover classification. It was
determined that a majority of land cover in the state of Connecticut does not require the amount of detail produced
through the TM/SPOT fusion method to be adequately classified (i.e. forest lands, agricultural lands, and water
bodies are mostly homogeneous entities and do not require high spatial detail to be classified accurately). However,
some of the urban features require the additional detail for improved classification. Therefore, in the hierarchical
approach, the majority of the Connecticut landscape was classified from only the multi-season Landsat TM
imagery which provides adequate information for general classification, and the low density developed areas were
derived from the TM/SPOT fused image and merged with the TM classification

STATEWIDE LAND COVER MAPPING

Data Types and Sources

The state of Connecticut is covered almost entirely by Landsat data collected at WRS Path 13, Row 31, with the
exceptions of the eastern most tier of 7 1/2 -minute quadrangles, covered by Path 12, Row 31. Therefore, in order to
obtain full Landsat coverage for the state, partial scenes from Path 12, Row 31 were required. In order to maximize
the information content and accuracy of the derived land use and land covers, data from two different seasons –
spring and summer – were required. Additional criteria were that the data be as contemporaneous as possible, as
cloud free as possible, and of high radiometric quality. LERIS already had in its archive a full Landsat scene for
summer 1995 which ended near the southern border of Connecticut. An appropriate spring 1995 Landsat image
was acquired which covered Connecticut, and Long Island. Spring 1994 and summer 1995 partial Landsat scenes
were acquired to cover the eastern half of Connecticut. In addition to the Landsat data, SPOT panchromatic data
were acquired covering the entire state. The SPOT data are composed of a mosaic of various dates of imagery
(1994-1996) compiled into15 tiles which cover all of Connecticut.

Methodology for Connecticut Land Use and Land Cover Mapping

The following discussion overviews the procedural aspects associated with the Connecticut land use and land cover
mapping portion of the project. In this approach, picture elements (pixels) from the TM imagery were separated
into general land cover groupings based on the spectral characteristics of the land cover types. The purpose of this
was to focus signature selection training on spectrally similar categories, thereby, reducing the number of
signatures and subsequent classes containing mixed land cover types. The groupings fall into the following three
broad categories: Vegetation, Water and Wetlands, Urban and Barren.

Vegetation. The Vegetation pixels were extracted using the Normalized Difference Vegetation Index (NDVI). In
general, this image enhancement technique measures the amount of vegetation biomass present for a given pixel.
The NDVI was calculated for both the spring and summer images. Various areas known to contain different
vegetation types (i.e. forest, agriculture, turf, etc,) were examined from each of the NDVI images and transects
were used to extract NDVI values. These values were used to develop upper and lower thresholds which would
identify pixels likely to contain vegetation. A binary map was created, based on these thresholds, containing all
pixels likely to be vegetation. The binary map was used to mask a 10 band (bands 1, 2, 3, 4, 5, 6, and 7 from the
spring image and bands 3, 4, and 5 from the summer image) multitemporal TM image to eliminate non-vegetative
pixels and extract only those pixels identified as having a vegetative cover. Training area selection was derived
using supervised, unsupervised, and guided clustering techniques. Supervised signature selection involves
digitizing areas of interest (aoi’s) around locations of known land cover and using the pixels within the aoi to
generate signature statistics which are used in classification. Another method of supervised signature selection is



through the use of pixel seeding and region growing. In this technique, a seed pixel is selected within an area of
known land cover, and any adjacent pixels that fall within set parameters are selected to create signature statistics
and used in classification. In unsupervised training selection, the user specifies the number of signatures to be
created. Pixels are then grouped into the specified number of signatures based on the spectral characteristics of
each pixel and which group it most closely resembles. In guided clustering, a small area of known land cover types
is selected from the imagery. Unsupervised clustering is performed to derive signature statistics for the land cover
types. Once several signatures are created, those signatures producing apparently satisfactory results based on their
statistics, mean plots, and visual identification were used in a maximum likelihood classification.

Water and Wetland. The Water and Wetland pixels were extracted using a Tasseled Cap transformed image in
conjunction with the Thermal band from the TM sensor. A Tasseled Cap transformation changes the TM image
data into channels of brightness, greenness, and wetness where the brightness channel highlights areas of high
reflectance, the greenness channel highlights areas which are vegetated, and the wetness channel highlights areas
that have a high water or moisture content. Areas known to be water and wetlands were examined from the Tassel
Cap image and the TM thermal band and pixel values were extracted for the brightness, greenness, wetness, and
thermal channels. These values were used to develop upper and lower thresholds which would identify pixels likely
to be water and pixels likely to be wetland areas. These thresholds were used to create two binary maps
highlighting all pixels within the image being considered water and wetlands. In addition, for the wetland mask,
since most wetlands contain vegetation, a majority of wetland pixels (primarily forested wetlands) were also
identified as vegetation and therefore classified in the vegetation classification procedure. In order to narrow the
number of pixels to be classified and to eliminate a double classification of wetland pixels, the vegetation binary
map was used to mask the wetland binary mask to eliminate those pixels that exist in both binary maps. The water
binary map was used to mask the springtime seven band TM image to extract only those areas identified as water.
Training area selection was done using both supervised and unsupervised techniques. Those signatures producing
apparently satisfactory results based on their statistics, mean plots, and visual identification were used in a
maximum likelihood classification. The wetland binary map was used to mask the 10 band multitemporal TM
image to extract only those areas identified as wetland. Training area selection and classification were performed
the same as for the water classification.

Merge vegetation, water, and wetland. The three classified images for vegetation, water, and wetland were
combined into one classified image. Where two classifications overlapped, an expert decision was used to
determine which classification was to have priority.

Cloud and Cloud Shadow. There were some clouds present in the TM imagery, primarily with the springtime data.
Fortunately most of these occurred where the springtime images overlapped and were therefore able to be
eliminated, using the cloud-free portions of one of the two images. However, some clouds and shadow areas did
exist in other areas of the images. In order to classify land cover for these areas, cloud and cloud shadow signatures
were included during the classification of the vegetation, water, and wetland layers. These classes were then used
to create a mask which was applied to the summertime images thereby extracting cloud and shadow-free pixels
from the summertime images for which cloud and cloud shadow existed in the springtime images. A supervised
signature selection was used to derive training signatures followed by a maximum likelihood classification. This
classification was then merged with the vegetation, water, and wetland classification replacing those areas
classified as cloud or cloud shadow. On-screen editing was performed to eliminate apparent errors.

Urban and Barren. Potential urban and barren pixels were extracted using the vegetation, water, and wetland
classification as a guide. All pixels previously classified as vegetation, water, and wetland were used to create a
mask. This mask was applied to the 10 band multitemporal TM image to identify areas which consisted only of
non-vegetated urban, barren and exposed soil areas. Supervised signature selection was used to generate training
signatures. Those signatures producing apparently satisfactory results based on their statistics, mean plots, and
visual identification were used in a maximum likelihood classification. A 5-by-5 majority filter was used to
generalize slightly this classification to eliminate some apparent errors, followed by on-screen editing to reduce
further the occurrence of errors. The urban and barren classification was merged with the vegetation, water, and
wetland classification to nearly complete the statewide classification. Filtering using a 3-by-3 majority filter was
then applied iteratively six times on selected categories in an attempt to spatially generalize the classification while



maintaining the highest level of thematic and spatial detail possible. The classification was then recoded into the
final 28 classes (Table 1).

Table 1. Connecticut Statewide Land Use and Land Cover Categories

Land Cover Class Name Area
(hectares)

Percent
Area

1 Commercial & Industrial & Pavement 56474 3.92
2 Commercial &Residential 84072 5.84
3 Rural Residential 20969 1.46
4 Turf & Tree Complex 62873 4.36
5 Turf and Grass 20503 1.42
6 Pasture & Hay & Grass 110734 7.69
7 Pasture & Hay/Cropland 213 0.01
8 Pasture & Hay/Bare Soil 9404 0.65
9 Bare Soil/Cropland 23031 1.60
10 Bare Soil 12356 0.86
11 Shade-grown Tobacco 395 0.03
12 Nursery Stock 520 0.04
13 Scrub & Shrub 7938 0.55
14 Deciduous Forest 647040 44.91
15 Deciduous Forest & Mountain Laurel 18328 1.27
16 Coniferous Forest 131195 9.11
17 Dead/Dying Hemlock 126 0.01
18 Forest Clear-cut 1198 0.08
19 Mixed Forest 12548 0.87
20 Deep Water 183285 12.72
21 Shallow Water & Mud Flats 7097 0.49
22 Non-forested Wetland 7423 0.52
23 Shrub Wetland 3660 0.25
24 Deciduous Forested Wetland 5342 0.37
25 Coniferous Forested Wetland 3868 0.27
26 Low Coastal Marsh 1967 0.14
27 High Coastal Marsh 3200 0.22
28 Bare Rock and Sand 4903 0.34

1440662 100.00

SPOT/TM Fused Image. In order to locate and identify isolated residential and commercial areas which tend to be
too small to be depicted by the Landsat TM sensor, yet are a numerous component of the Connecticut landscape, a
TM/SPOT fused image was created. This image was closely examined, and thresholds developed, based on the
spectral characteristics, to identify urban structures and, alternatively, other features with spectral characteristics
which are similar to the urban features (e.g., barren land, bare soil, exposed rock, etc.). A binary map was
generated based on these thresholds. This 10 meter binary map was then resampled to a 30 meter dataset that
corresponds to the 30 meter vegetation, water, wetland, urban and barren classification. The urban structure binary
map was then fused with the classification. To eliminate the errors associated with the development of the urban
structure layer due to the inclusion of pixels other than structures (e.g., barren areas), the urban structure pixels
had to fall within certain land cover classes. If an urban structure pixel fell within the following classes, it was
considered rural residential, otherwise it was kept as originally classified: Turf & Grass, Deciduous Forest,
Deciduous Forest & Mt Laurel, Coniferous Forest, Mixed Forest.

Post Classification Editing. On-screen, interactive, post-classification editing was performed to eliminate any
remaining apparent errors. These edits consisted primarily of converting major highways into Commercial &



Industrial & Pavement from  Residential & Commercial, utility rights-of way from  Rural Residential to Scrub
Shrub, and from Rural Residential to Forest types where rural residential was classified due to snow and ice being
present in some of the SPOT panchromatic scenes. Post-classification editing was performed quadrangle by
quadramgle using the source digital image data as a base for on-screen editing and USGS topographic maps as an
additional reference to assist in editing. Figure 3 portrays the final land use and land cover map for Connecticut,
and Figures 4 and 5 depict land cover in the West Torrington and Essex quadrangles, respectively.

Accuracy Assessment. Accuracy was determined by selecting a stratified random sample of pixels throughout each
classified image. For the Connecticut statewide classification, 1149 pixels were selected. In the case of this
classification, each of the pixels was examined using the spring and summer TM images in conjunction with the
SPOT image to identify the true land cover of each pixel. The product of the accuracy analysis was an overall
classification accuracy and a Kappa coefficient of agreement. The overall classification accuracy is a percentage
expressed as the number of correctly classified sample pixels over the total number of sample pixels. This
percentage indicates how accurate the classification is with respect to the reference data (Story and Congalton,
1986). The Kappa coefficient of agreement is a measure of the actual agreement minus chance agreement. This
value provides a better measure of how the classification performs compared to the reference data because it takes
into account those pixels omitted into other categories, not just those pixels correctly classified (Congalton et al.,
1983) Tables 2 and 3 provide accuracy values for the Connecticut statewide classification.

Figure 4. Connecticut Land Use and Land Cover.



Figure 5. Land Cover for West Torrington. Figure 6. Land Cover for Essex.

Table 2. Overall classification accuracy for Connecticut statewide classification.

Class Name Reference
Totals

Classified
Totals

Number
Correct

Omission
Accuracy

Commission
Accuracy

Kappa

Commercial & Industrial & Pavement 50 45 40 80.00% 88.89% 0.8838
Residential & Commercial 66 57 48 72.73% 84.21% 0.8325
Rural Residential 28 31 21 75.00% 67.74% 0.6694
Turf & Tree Complex 31 45 27 87.10% 60.00% 0.5889
Turf & Grass 32 28 23 71.88% 82.14% 0.8163
Pasture & Hay & Grass 97 74 64 65.98% 86.49% 0.8524
Pasture & Hay/Cropland 4 4 3 75.00% 75.00% 0.7491
Pasture & Hay/Exposed Soil 15 31 13 86.67% 41.94% 0.4117
Exposed Soil/Cropland 23 35 20 86.96% 57.14% 0.5627
Exposed Soil 24 26 20 83.33% 76.92% 0.7643
Shade-grown Tobacco 5 5 5 100.00% 100.00% 1.0000
Nursery Stock 3 4 3 100.00% 75.00% 0.7493
Scrub & Shrub 17 23 8 47.06% 34.78% 0.3380
Deciduous Forest 356 326 288 80.90% 88.34% 0.8312
Deciduous Forest & Mt Laurel 27 28 13 48.15% 46.43% 0.4514
Coniferous Forest 86 86 70 81.40% 81.40% 0.7989
Dead & Dying Hemlock 1 2 1 100.00% 50.00% 0.4996
Forest / Clear Cut 0 16 0 --- --- 0.0000
Mixed Forest 35 27 15 42.86% 55.56% 0.5416
Deep Water 103 101 100 97.09% 99.01% 0.9891
Shallow Water & Mud Flats 22 21 14 63.64% 66.67% 0.6602
Non-forested Wetland 20 24 15 75.00% 62.50% 0.6184
Deciduous Shrub Wetland 11 20 11 100.00% 55.00% 0.5457
Deciduous Forested Wetland 27 20 14 51.85% 70.00% 0.6928
Coniferous Forested Wetland 19 21 14 73.68% 66.67% 0.6611
Low Coastal Marsh 9 10 6 66.67% 60.00% 0.5968
High Coastal Marsh 15 17 13 86.67% 76.47% 0.7616
Exposed Rock & Sand 23 23 20 86.96% 86.96% 0.8669

Totals 1149 1149 889 77.37 % 0.7424
Omission Accuracy = (Number Correct / Reference Totals); Commission Accuracy = (Number Correct / Classified Totals)



Table 3. Overall Level  I classification accuracy for Connecticut statewide classification.
Class Name Reference

Totals
Classified

Totals
Number
Correct

Omission
Accuracy

Commission
Accuracy

Urban 207 206 177 85.51% 85.92%
Agriculture 171 179 150 87.72% 83.80%

Forest 522 507 476 91.19% 93.89%
Water 125 122 115 92.00% 94.26%

Wetland 101 112 81 80.20% 72.32%
Barren 23 23 20 86.96% 86.96%
Totals 1149 1149 1019

Overall Classification Accuracy = 88.68% (Kappa = 0.8436)
Omission Accuracy = (Number Correct / Reference Totals); Commission Accuracy = (Number Correct / Classified Totals)

CONCLUSIONS

The primary objective of the Connecticut statewide and Long Island mapping project was to derive the most
accurate and useful land use and land cover information possible given the use of the most cost effective techniques
available. The initial research performed in this project lead to the development of a hierarchical approach to land
use and land cover classification. This classification approach was based on the spatial analysis and classification
performed on the Essex and West Torrington quadrangles. It was discovered during this classification analysis that
a vast majority of the land cover in Connecticut does not require a high degree of spatial resolution to be classified
accurately. For example, water, forested areas, and agricultural fields are fairly homogeneous over large areas.
These categories, therefore, did not require the more detailed, larger, and computationally demanding 10 meter
image to classify accurately. It was in the urban and isolated developed areas that the more detailed 10 meter
dataset would have proven useful. Because of the radiometric differences among the SPOT images comprising the
statewide mosaic, it was not possible to use the TM/SPOT fused image to its full potential. Therefore this technique
was not utilized as anticipated. However, by using the hierarchical classification technique, specific, spectrally
related, land cover groupings were isolated from the primary image and signature selection was focused on each of
the grouping types minimizing the effect of misclassification between spectrally similar classes of other groups.

Overall, the hierarchical classification technique was found to be a useful technique. The benefits allowed the
analyst to focus attention on spectrally similar land cover types (i.e. water, wetland and vegetation), and had the
overall quality of the TM/SPOT fused image been better, would have allowed for the use of different image types to
classify various land cover features depending on the detail required. However, the technique was not without
drawbacks. The largest of these was the amount of space required for the storage of several statewide images of
Connecticut depicting each of the land cover groupings, and their respective classifications and iterations. These
images required over four times the space needed as opposed to using a single all inclusive image. Additionally,
the amount of time spent classifying several images might have been reduced by classifying a single image (TM
alone) or two types of images (TM for certain land cover types, and TM/SPOT fused image for land cover types
requiring more detail). However, classifying one or two images and trying to capture the major land cover types
within them would have required more effort to create land cover signatures which accurately characterized the
land cover features they represented while minimizing the effects of category misclassification. There was some
inclusion of other category types (especially along edges where two types of groups border one another) These
tended to be minimized and were easily classified into an appropriate category while most of the signatures from
the image group where focused on the image grouping in question.

Unfortunately, the TM/SPOT fused image did not provide a reliable enough image for statewide classification due
to the radiometric differences between the several SPOT panchromatic images required to create a composite
image to cover the state of Connecticut. The image was sufficient enough to use, however, in identifying isolated
developed areas which are characterized in the rural residential category. In the future, as new sensor become
available, such as Landsat 7 which will contain a multispectral sensor and a smaller resolution panchromatic
sensor, image fusion and classification will become more easily accomplished. This is due to the fact that the
images to be fused will be collected at the same time, over a larger area, reducing the differences in radiometric
qualities.
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