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ed land surface within a watershed has long been known to influence the biota of
receiving streams and waterways. In contrast, vegetation in riparian zones can filter pollutants and reduce
flow velocities that incise stream channels. We examined the relationship between the built environment
and water quality for streams (1st through 4th order) across three physiographic provinces of the State of
Maryland, USA, including 59 watersheds with some 865 stream sampling locations. We used image data
products capable of discriminating fine-scale information of the land surface, including proportional
impervious, tree, grass and crop cover. Stepwise multiple linear regression and decision tree statistical
approaches were used to assess the relationship between the land cover predictors and benthic indices of
biological integrity (BIBI) and number of sensitive invertebrate taxa (NEPT), response variables derived from
the Maryland Biological Stream Survey (MBSS). Impervious and tree cover were found to be the best
predictors of stream biota, although this varied with physiographic province and the response variable of
interest. The best multivariate models predicted 65% of variability in BIBI and 62% of NEPT (pb0.001). The
configuration of tree cover across the landscape and the distance of land cover to the stream channel was
found to be important in many, but not all cases for improving the predictive quality of statistical models
estimating stream biota metrics. This work advances the estimation of stream health characteristics in areas
where MBSS measurements do not exist but can be estimated using comparable land cover information, and
informs guidelines for management and restoration.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

The altered composition and configuration of land use within a
watershed, such as expansion of commercial and residential develop-
ment, is widely known to disrupt the hydrology and ecology of stream
ecosystems (Allan, 2004; Nilsson et al., 2003). Non-point source
pollutants arise primarily from impervious surface areas (such as
roads, parking lots, houses) and agricultural fields (pesticides, her-
bicides, excess nutrients). As impervious area increases, watershed
base flows are lowered and flood discharge frequency and magnitude
increase due to the combination of reduced infiltration into ground-
water and the consequent increase in overland flows (Brun & Band,
2000, Jennings & Jarnagin, 2002). The connection of impervious
surface areas across the landscape also produces flashier stream
hydrographs that exhibit a decreased lag time between storm events
and peak discharge (Moglen & Beighley, 2002). Stream channels are
modified by these changes in flow, increasing bank and stream bed
incision, exacerbating erosion and associated sediment loads (Palmer
et al., 2002; Schueler, 1994).
l rights reserved.
Freshwater stream biota are vulnerable to land use disturbance and
change, and associated pollutants, resulting in a high proportion of
freshwater fishes, amphibians, and macroinvertebrates being classi-
fied as vulnerable, imperiled or extinct in the United States (U.S. EPA,
2002). Numerous studies in the Chesapeake Bay watershed alone
have demonstrated the association between land use changes and the
degradation of the biological, chemical and physical quality of streams
(Liu et al., 2000; Paul et al., 2002). Further, the proportion of imper-
vious cover in this region is expected tomore thandouble over the next
30 years, assuming current trends continue (Jantz et al., 2003), and
related trends are expected nationwide (Brown et al., 2005).

The adverse effects of these developed and agricultural areas on
aquatic systems can bemitigated by riparian vegetation buffers, which
reduce the force of overland flows, take up excess nutrients, maintain
stream bank integrity, provide shade that reduces stream warming,
and generally act to mitigate the physical and ecological impacts
described above (Baker et al., 2006a; Reed & Carpenter, 2002;
Groffman et al., 2003; Jordan et al., 1993; Snyder, et al., 2003; Weller
et al., 1998).

Biological monitoring can help identify anthropogenic influences
and degradation in streams, and stream health databases have been
compiled (e.g., U.S. EPA, 2002; Strayer et al., 2003) allowing more
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Fig. 1. Maryland Biological Stream Survey (MBSS) sampling point locations. Graduated symbols depict the value of the biological index of biotic integrity (BIBI), where higher values
(larger symbols) indicate higher biotic indices and stream health.
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comprehensive analyses in relation to land cover information (e.g.,
Basnyat et al., 2000; Meador & Goldstein, 2003; Potter et al., 2004;
Roth et al., 1996; Urban et al., 2006). Similar advancements in moni-
toring land cover with satellite image data permit improved charac-
terization of the links with stream biota (e.g.,Fisher et al., 2000; Goetz
et al., 2003; Jones et al., 2001; Stewart et al., 2001; Snyder et al., 2005).

Our objectives in this study were to analyze stream biota mea-
surements routinely acquired across the state of Maryland in the
context of the land cover and land use that comprise the watersheds
(catchments), and to assess the influence of landscape configuration on
statistical model predictions of stream biota metrics.

2. Study area and data sets

The ~26,000 km2 state of Maryland was stratified into three gene-
ral physiographic provinces; coastal plain, Piedmont, and highlands
(Fig. 1). The coastal plain (13,500 km2), surrounding the Chesapeake
Bay estuary, is mostly flat lowlands with interspersed forest and
agricultural cover. The Piedmont (7000 km2), occupies the area bet-
ween Washington DC and the Ridge and Valley region of central
Maryland. The Highlands (5500 km2), as defined for this study, are
made up of the Ridge and Valley, Appalachian Plateau, and the Blue
Ridge of western Maryland. The state has relatively steep climate
gradients across these provinces, with warmer average temperatures
and longer growing season lengths as one moves from the western
highlands to the eastern coastal plain.

2.1. Stream survey data

Stream biota and associated water quality measurements were
acquired from the Maryland Biological Stream Survey (MBSS) (Roth
et al., 2005). The MBSS is a cooperative effort between several
governmental and non-governmental agencies, professional biolo-
gists, students and volunteers designed to assess the biophysical
integrity of a rotating selection of Maryland's streams on an annual
basis (MD-DNR, 2007). Streams are sampled in a stratified random
selection of segments, 75m in length, within one third of the 18major
drainage basins of Maryland. The MBSS sampling points include 1st
through 4th order streams, using the Strahler (1952) stream order
method and USGS stream channel delineations, where 1st order
streams are in the headwaters (most upstream). Approximately 300
stream segments are sampled each year, acquiring data on the che-
mical, biological, and physical characteristics of each stream reach
(Roth et al., 2005).

The Maryland Department of Natural Resources provided us five
years (2000 to 2004) of MBSS data covering 1360 stream samples; 544
for the coastal plain, 382 for the Piedmont, and 434 for the highlands
(see Fig. 1). There were over three dozen attributes for each MBSS
stream sample point, including information on site location and iden-
tification, physiographic province, number of vertebrate and inverte-
brate taxa, and rated metrics of biotic indexes. A complete list of the
MBSS data set attributes is available online (www.dnr.state.md.us/
streams/mbss/parameters.html).

We restricted the current analyses to a selection of attributes
denoting geographic location, Benthic Index of Biological Integrity
(BIBI), number of Ephemeroptera, Plecoptera, and Trichoptera indivi-
duals (NEPT), and physiographic province. The richness (total number)
of NEPT macroinvertebrate taxa is a commonly and widely used
measure of benthic community condition because these taxa are
generally intolerant of poor water quality. The MBSS determined BIBI
scores by comparing the benthic assemblage (i.e. the composition
of invertebrate stream organisms) at each site to those found at
minimally impacted reference sites, the latter of which are defined
as those sites having minimal exposure to human activities and
representative of the stream type and region of interest (seeRoth et al.,
2005). Benthic macroinvertebrates were sampled in the spring and
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Fig. 2.Map of the state of Maryland showing MBSS watershed locations and year sampled, and land cover variables depicted for an example watershed in the Coastal Plain province.
ISA is a per-pixel impervious surface area.
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identified to genus or lowest practical taxon in 100-organism sub-
samples. Thus, the BIBI provides an index of the biological integrity of
a stream reach relative to high quality undisturbed conditions (Stri-
bling et al., 1998). The range of NEPTwas 0 to 23 (unique taxa), and the
range and distribution of the relative BIBI values are provided in Fig. 1.

2.2. Land cover metrics

2.2.1. Impervious cover
We made use of a 30 m continuous impervious surface area maps

(%ISA) of the entire Chesapeake Bay watershed, derived from a multi-
date (1998–2002) series of Landsat7 Enhanced Thematic Mapper
(ETM+) imagery (Goetz & Jantz, 2006). A total of 60 Landsat images
were analyzed, including scenes capturing Spring, Summer and Fall
differences under both leaf-on and leaf-off conditions (a list of scenes
is available inGoetz et al., 2004). All scenes were radiometrically
calibrated, orthographically rectified using USGS 30 m digital eleva-
tion data sets, corrected for topographic illumination effects, tempo-
rally normalized between scenes, and cloud and shadow masked
(Goetz et al., 2004). The derived %ISA maps contains subpixel in-
formation on the proportion of each 30 m (900 m2) pixel that is
occupied by impervious cover, ranging from ca. 10% for low-density
residential development to nearly 100% in intensively developed
commercial and industrial areas (Fig. 2).

The extent of impervious cover represented in the map was
validated using higher resolution imagery, with overall accuracy of
~90% (Jantz et al., 2005). The spatial detail in the subpixel maps is
sufficient for delineating areas with even relatively little impervious
cover, such as low-density residential housing, albeit at somewhat
lower accuracy in these areas. This methodology was also recently
used by the Multi-resolution Land Cover Consortium (MRLC) to pro-
duce similarmaps across the nation, as part of the National Land Cover
Database (NLCD) (Homer et al., 2004; Yang et al., 2003).

2.2.2. Tree Cover
Continuous tree cover maps (%Tree) were produced using the same

approach as that for the %ISAmaps, including use of fine-scale maps of
tree cover derived from digital orthophotographs (0.5 m DOQs) and
high-resolution (fused 1 m and 4 m) IKONOS satellite imagery for
training the subpixel algorithms applied to the multitemporal Landsat
imagery (Goetz, 2006). The latter were precision georeferenced image
data sets acquired and processed over an 1800 km2 area in central
Maryland. The IKONOS images were classified into tree cover maps,
making use of forest cover interpreted from the DOQs as training data,
and the resulting accuracy of the tree cover classification, as asses-
sed with an independent validation sample of some 600,000 point
locations, was over 97% (Goetz et al., 2003). The tree cover maps
derived from the Landsat imagery (Fig. 2) are, as with the impervious
maps, expressed as a continuous value between 0 and 100%. Again, the
NLCD now provides a similar %Tree cover product nationwide, by
mapping zones loosely based on ecoregions.

2.2.3. Crop and grassland
Proportional crop and grassland cover were derived from the U.S.

Department of Agriculture's National Agricultural Statistics Service
(NASS)(USDA, 2002), based on analyseswehelped them conduct using
the same Landsat imagery as previously described (Goetz et al., 2004).
NASS personnel derived over 60 categories of crop and anthropogenic



Fig. 3. Flow chart of the methodological approach used to assess the relevance of land cover to stream biota measurements. MBSS data from multiple years were extracted for associated
watersheds delineated using a digital elevation model, and land cover informationwas summarized for the same watersheds to conduct comparisons with the MBSS metrics.
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Fig. 4. Graphic depiction of example landscape weighting scheme used to assess the relevance of inverse distance to the stream channel (linear in this case) and land cover
information (%Tree in this case). Combining these two weighted variables produces maps depicting the most heavily weighted areas as those that are closest to the stream but with
little to no tree cover.
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land cover using an iterative, supervised Bayesian cluster labeling
approach, informed with a large database of randomly selected training
sites, rotated and revisited on a 5-year basis, as part of their routine crop
surveys (USDA, 2002).Weused 44 of the crop categories in theNASSmap,
selecting only those that correspond to agricultural human use of the land
that cannot easily bemisinterpreted as “natural” land cover in order to be
relatively conservative aboutwhatwas considered agriculture. Grass areas
were identifiedusing theGrass andPasture categories of theNASSmap. An
example of these map products is shown in Fig. 2.

3. Methods

Using the land coverdata sets previously describedwe calculated the
percentage of each cover type (%ISA, %tree, %crop, %grass) within each
delineated catchment upstream of the MBSS sampling point (described
below), and compared those statistics to the MBSS metrics collected at
that point. Because these variableswere all continuous, eachpoint in the
landscapemay consist of some fraction of each of these cover types, and
each variable therefore reflects this proportional cover when calculated
acrossMBSSwatersheds. In some cases, the proportional values can add
up to slightly greater than 100%, particularly where tree cover overlies
grass and other cover types. Various weighting schemes were used to
explore the relative importance of landscape configuration, riparian
buffer zones (to a minimum of 30 m), and upstream distance from the
sampling point on predictions of stream biotic metrics. The general
approach is outlined in Fig. 3, and the details are given below.

3.1. Watershed delineation

We used a statewide 30 m digital elevation model (DEM) to define
catchment areas associated with the MBSS stream network and the
sample point locations (Fig. 3). The limited vertical accuracy of the
DEMdatamade it difficult to delineate catchments in the coastal plain,
which has very little vertical relief and is dissected by trenches used
to aid crop drainage on poorly drained soils. These areas were based
upon use of the MBSS delineated catchments, which are known to be
somewhat unreliable in this province (Baker et al., 2006b). In areas
where the stream network derived from the DEM did not match the
MBSS stream network, we reconciled the two by ”burning” the MBSS
streams into the DEM and locating theMBSS sample locations as “pour
points.” Any remaining sampling points that were located on an ad-
jacent but incorrect tributary were omitted. We also used a flow
accumulation map derived from the DEM which, together with the
other checks, refined our delineation of the catchmentswhile ensuring
that the MBSS sampled stream reaches were properly located in the
correct catchment. This also allowed us to have confidence in different
delineations of catchment extent and associated area contributing to
the MBSS sampling point. Very small catchments, less than 15 pixels
(1.35 ha) in the DEM, were omitted from further analysis. We also
removed repeat sample data where multi-year measurements were
made at the same sampling point, keeping only the data closest to the
time period of the land cover data set.

We explored definitions of catchment area contributing to the
MBSS sampling point locations in three ways; 1) all the upstream land
area (30 m grid cells) that contributes to any sampling point, 2) only
the catchment area that contributes to a specific sampling location,
excluding areas that contribute to sampling locations that may exist
further upstream, 3) aggregated catchment areas that contribute to
the highest order sampling locations, considering only the data from
the point that subsumes all lower order streams. This last definition
differs from the other two in that, for example, a 3rd order stream
will subsume the catchment of any MBSS sample points on 2nd or 1st



Fig. 5. Scatterplots showing the relation of each of the four land cover variables to (A) BIBI and (B) NEPT, stratified by physiographic province. The comparisons shown here are for the
higher order (aggregated) watersheds, which subsume any upstream sampling points.
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order headwater streams. In these cases, only the MBSS data from the
higher order catchment (3rd over 2ndand1st; 2ndover 1st)wasutilized
in the analyses. For catchments without upstream sampling points the
various catchment definitions will be the same. We note that multiple
sampling points occur only in the larger watersheds (those with more
than 100 non-tidal stream miles), by design, in order to improve the
metrics (BIBI, NEPT) estimated from the stream measurements.

3.2. Landscape weighting schemes

We tested several distance weighting schemes to scale the land
cover contribution at each location (cell) within a watershed to the
stream biota metrics at the sampling point. The first approach in-
corporated an inverse distanceweighting (IDW) to the stream channel
from each cell location, as well as an IDW upstream from the MBSS
sample location (pour point) (Fig. 4). Bothwere calculated as simply 1 /
distance (D). The combination of these two weightings, similar to that
used byKing et al. (2005)with land cover type classification, provides a
relative contribution from each watershed location assuming both
linear distance decay to the stream channel and downstream to the
sample point, regardless of actual flow path or stream routing com-
plexity. A variation of this approach incorporated negative exponential
decay (−0.1 to −0.0001) weighting schemes applied to each location
within thewatershed. Theseweightingswere again applied to both the
distance from the stream channel and the along-streamdistance to the
MBSS sampling location (Fig. 4).



Fig. 6. An example of binary hierarchical splits produced by a decision tree algorithm, in this case trained to classify NEPT for all (1st through 4th order) stream catchments, across all
physiographic provinces. Numbers in the terminal nodes (boxes) correspond to the mean value for that class.

Table 1
Best predictors selected in stepwise MLR models of BIBI and NEPT by physiographic
region, with and without landscape weighting

Region Primary selected variables r2 Δr2 p-value

BIBI All regions ISA, Tree, Crop 49% ***
Coastal ISA, Tree, Crop 35% 0.146
Piedmont ISA, Crop, Tree 65% ***
Highlands ISA, Grass, Area 28% *
Landscape weighted
All regions ISA, Grass, Area 42% −7% ***
Coastal Tree, Crop, Grass 55% +20% 0.087
Piedmont ISA, Crop, Grass 55% −10% ***
Highlands Tree, ISA, Grass 49% +21% **

NEPT All regions Tree, Grass, Crop 52% ***
Coastal ISA, Area, Crop 39% 0.158
Piedmont Tree, Crop, Grass 43% **
Highlands ISA, Grass, Tree 44% **
Landscape weighted
All regions ISA, Crop, Tree 35% −17% ***
Coastal Tree, Area, Crop 62% +24% *
Piedmont ISA, Grass, Tree 29% −14% **
Highlands ISA, Tree, Area 52% +8% **

Sample sizes for the results shown here (aggregated catchments) were 10 (Coastal), 32
(Piedmont), 17 (Highlands) and 59 (all). p-values *, ** and *** correspond to pb0.05,
pb0.01, pb0.001 respectively.
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Another weighting scheme made use of the flow accumulation
grid, which we derived as part of the watershed delineation exercise
in the ESRI ArcGIS environment, and a map derived from the per-pixel
amount of tree cover. We used the flow accumulation grid to weigh
cells within each watershed based on their relative ranking in flow
accumulation across the landscape, summed for each grid cell, such
that each cell has a value for the number of other cells within the
catchment that drains into it. We used a log transformation of the
flow accumulation values to deemphasize a large number of areas
representing flow from just a few pixels, which form entirely self-
contained small ‘catchments’. This occurs almost entirely within areas
of little or no topographic relief. Outputs of the flow accumulation
map were scaled between 0 and 1. The tree cover surface was created
by weighting the cells without tree cover higher than those with
denser tree cover. By combining the tree cover surface with the
scaled flow accumulation grid, a weighted surface was created that
emphasized contributions from areas nearer the stream channel and
without tree cover over those areas further away from the stream
channel with dense tree cover. Our intent with this approach was to
account for land cover contributions to streams from areas where
forested riparian buffers were lacking, particularly in areas where
flowpaths converged on the stream channel.

A variation of the latter scheme excluded the flow accumulation
information in order to attempt a simpler approach that still deem-
phasized contributions fromsufficiently buffered riparian areas, but also
eliminated issues with the contribution of flow paths in areas of little
topographic relief. In this case, instead of flow accumulation combined
with tree cover, we simply combined the inverse distance to the stream
with the tree cover map. Thus the importance of tree cover decreased
with distance from the stream channel (Fig. 4).

All of these analyses were done with ESRI® GIS scripts that were
used to extract each watershed, calculate distance to the stream
channel or other components of the particular weighting scheme,
apply the resulting weighted surface to each of the proportional land
cover maps (%ISA, %tree, %crop, %grass), and aggregate the values for
all contributing cell locations. In all cases, outcomes of each landscape
weighting schemes were compared to non-weighted results to assess
the effectiveness of the approach.

3.3. Statistical analyses

To examine the relationships between response and predictor
variables, we used simple correlation analysis, stepwise multiple
linear regression (MLR), and binary hierarchical splitting (decision



Fig. 7. Scatterplots of observed versus best multivariate-predicted values of (A) BIBI and
(B) NEPT, with symbols indicating the physiographic province. The models are listed in
Table 2. A one-to-one line, indicating perfect agreement, is shown. Note the distinction
between regions, particularly in NEPT, with the highest values in the Highlands
province and the lowest in the Coastal Plain.
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tree) approaches. Using both MLR and decision trees, we tested models
for 1st through 4th orderMBSS stream samples and compared distance-
weighted versus non distance-weighted schemes. The predictor vari-
ables included physiographic region (categorical) and the continuous
variables stream length, stream order, watershed area, %ISA, %tree, %
crop, and %grass. The response variables were the continuous variable
metrics benthic IBI (BIBI) and the number of sensitive taxa (NEPT).

MBSS stream biota metrics were predicted from the weighted land
cover information using k-fold forward stepwise MLR (Sokal & Rohlf,
1994). This procedure allowed us to train a linear model on a portion of
the data (80%) while withholding a selection of the data (20%) for sub-
sequent cross validation. This was done repeatedly (k=20 times) using
randomly selected subsets of the data. Predictor variables were iter-
atively selected based on their relative power in explaining variance
within the response variable, with at least a 2% increase in explained
variance for entry.

The decision tree approach was also used to identify key land cover
variables in relation to MBSS response variables. This technique builds
a predictive model in a hierarchical fashion using binary splits of
predictors that explain the most variance in the response variables,
resulting in a ‘tree’ that identifies split values (sometimes referred to as
decision rules) and a set of terminal or end nodes that identify the final
set of response variable values that can be derived from the predictors
(sometimes referred to as leaves). We used the decision tree im-
plemented in the R statistical / graphical software package (http://
www.r-project.org/), specifically the recursive partitioning and regres-
sion trees (rpart) function in R. Additional detail on decision trees is
available in Breiman et al. (1984), and examples are further described
by Goetz et al. (2004).

4. Results

4.1. Land cover predictors of stream biota metrics

When plotted against one another, the predictor and response
variables, stratified by physiographic province and stream order,
revealed differences in the variability of individual predictors relative
to the response variables over this domain (Fig. 5). The highest cor-
relations were between the land cover predictors and MBSS response
variables in the Piedmont region, although other significant correla-
tions were evident in other provinces as well. We do not present or
discuss all the results here because of the large number of possible
combinations of predictors derived from the various distance weight-
ing schemes, and the lack of consistent predictors across provinces
and catchment sizes, but we do provide a few inferences. The utility
in presenting these single predictor variable correlations with the
response variables is to convey how the data vary in terms of the land
cover variables, the physiographic provinces, and the highest stream
order present within the catchment. Generally the response variables
increase with tree cover and decrease with impervious cover, but
that was not always the case. Crop and grass cover were much more
variable relative to the response variables, despite the potential effec-
tiveness of grass as a buffer in riparian zones (Lyons et al., 2000), and
not readily interpreted or consistent across the range of comparisons.
Nonetheless, results for BIBI and NEPT were comparable in terms of
direction of the correlations (positive or negative) with the individual
predictors.

The decision tree models produced the strongest results in cases
with the largest samples sizes (i.e. all watersheds and 1st order
watersheds), which is consistent with observations that these algo-
rithms are more robust with larger sample sizes. Initial splits in the
decision trees typically included %ISA or %tree, followed by additional
splits by physiographic region. This was true for both the non-
weighted land cover values and the various landscape weighted
schemes. An example is the decision tree model of NEPT generated for
all watersheds, where the initial split on %tree cover was followed by
splits on physiographic province, and then finer gradients in the other
land cover variables (Fig. 6). The highest explained variance of all the
decision tree models was for the case shown in Fig. 6 (r2=60%) and
decision rules (based on the binary splits onpredictor variables), which
can be used to apply the model to other watersheds, are included.

Using the stepwiseMLR approach allowed a systematic selection of
predictors across the range of scenarios considered. Unlike the
decision tree models, the best results, in terms of predictive ability,
were for the aggregated watersheds consisting of 4th order and stand-
alone 3rd order stream catchments (n=59, Table 1). These aggregated
catchments may incorporate contributions from areas upstream of
additional sampling points, which were not included in this analysis
of aggregated catchments in order to avoid issues associated with
lack of statistical independence (i.e. catchment definition 3 above, for
which only the MBSS data from the sampling point that subsumes
all upstream area was considered). The total variance explained was
comparable to the decision tree approach (N60%), but the decision tree
results were a useful addendum to the MLR in terms of identifying the
importance of physiographic province (a categorical variable more
difficult to incorporate and interpret in MLR without log transforma-
tion). Based on the results of the decision trees, we first stratified the
MLR modeling by physiographic province. The differences between
provinces emphasized the considerable differences in both stream
biota and land cover between these regions.

Within the MLR modeling, land cover variables were always
selected as best predictors, whereas simple physical descriptors (e.g.
area, stream length) were only occasionally selected, unlike in some

http://www.r
http://www.r


Fig. 8. Maps of the spatial distribution of differences between observed and predicted BIBI and NEPT values.

Table 2
Best fit stepwise multiple linear regression models of BIBI and NEPT by physiographic
region, with root mean squared errors (RMSE)

Region Multivariate model RMSE

BIBI All regions 2.01+(−0.03 · ISA)+(0.02 ·Tree)+(0.02 ·Crop) 0.47
Piedmont 0.74+(0.01 · ISA)+(0.04 ·Crop)+(0.05 ·Tree) 0.30
Coastal⁎ 0.59+(0.27 ·Tree)+(0.04 ·Crop)+(0.02 ·Grass) 0.14
Highlands⁎ 2.74+(0.34 ·Tree)+(−0.18 · ISA)+(0.01 ·Grass) 0.14

NEPT All Regions −4.33+(0.17 ·Tree)+(0.23 ·Grass)+ (−0.03 ·Crop) 3.75
Piedmont −6.72+(0.33·Tree)+(0.17 ·Crop)+(0.11 ·Grass) 1.95
Coastal⁎ −0.38+(0.65 ·Tree)+(0.02 ·Area)+(−0.03 ·Crop) 0.74
Highland⁎ 8.47+(−1.47 · ISA)+(1.88 ·Tree)+(−0.008 ·Area) 1.60

An ⁎ next to the region category (physiographic province) indicates that the land cover
variables are landscape weighted values (as described in methods). Watershed area
values are in km2.

4083S. Goetz, G. Fiske / Remote Sensing of Environment 112 (2008) 4075–4085
previous studies that are also stratified by physiographic province (e.g.
Strayer et al., 2003). Percent ISAwas themost commonly selected variable,
and this was particularly true when landscape weighting schemes were
not applied (Table 1). %Tree coverwas the secondmost frequently selected
variable, even accounting for the slight co-linearity of these variables
(r=0.47), which further decreased with landscape weighting (r=0.35).
Multivariate models of the Coastal Plain were sometime statistically
insignificant (pb0.05) because of the relatively small sample sizes. %Tree
was usually selected (3 of 4 cases) in the Coastal Plain, and this was
particularly true when distance weighting was considered (Table 1).
Further, %ISAwas replaced in this case by %Crop as a predictor. %Cropwas
never selected in Highlands but usually (7 of 8 cases) in the Piedmont and
Coastal Plain province models. The strongest multivariate models, with
over 60% of variance explained, were for BIBI in the Piedmont (10% more
variance explained if not weighted) and NEPT in the Coastal Plain (24%
more variance explained whenweighted).

The best multivariate models of BIBI and NEPT values for water-
sheds across each of the physiographic provinces compared well to
the observed values, i.e., the models performed reasonably well both
in terms of statistical correlation (Fig. 7) and consistency in the spatial
distribution of the residuals (Fig. 8). These best-fit models are
presented in Table 2, along with RMS error values.
4.2. Assessing the various weighting schemes

The landscape distance weighting schemes had the most improve-
ment on predictions of NEPT or BIBI when applied to the aggregated
(4th and stand-alone 3rd order) catchments. For higher (1st and 2nd)
order stream catchments, i.e. headwaters, therewas generally nomore
than a 2% increase in explained variance (r2) for the weighted versus
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the non-weighted model results. The distance weighting scheme that
accounted for both the amount of tree cover and the distance from the
stream channel (Fig. 4) proved to be the most effective at capturing
contributions from the landscape that accounted for the variability of
the stream biotic measurements at the sampling point. This was true
for both BIBI and NEPT. The increase in variance explained using this
approach ranged from20% in both the Coastal Plain and the Highlands,
to negligible or negative influence in the Piedmont. As noted above,
landscape weighting sometimes changed the variables selected, e.g.,
deemphasizing the relevance importance of %Grass for predicting
NEPT in the Highlands (Table 1).

5. Discussion and conclusions

The primary objectives of this analysis were to assess the extent to
which land cover variables, including maps of proportion land cover
(%ISA, %tree, etc.), can be used as predictors of the biotic health of
streams, and the extent to which configuration of the landscape
influences these predictions. The land cover and stream biota data sets
were well quantified and documented (e.g.Goetz et al., 2004; Jantz
et al., 2005; Roth et al., 2005), and thus provided a good basis for
addressing these objectives.

The statistical analyses identified %ISA and %Tree within a
watershed as the best predictors of stream biotic metrics, as well as
the proximity of tree cover in the landscape relative to the stream
channel. There were no cases with either the decision tree or MLR
models where less than 3 variables were selected, and physical
variables (e.g. area) were selected second or third if at all, emphasizing
the importance of land cover information to stream health. These
results are consistent with recent findings across a similar gradient of
physiographic provinces in North Carolina (Potter et al., 2004), an
urban-rural gradient in Connecticut (Urban et al., 2006), across the
Highlands ofWest Virginia (Snyder et al., 2003) and, most recently, the
eastern U.S. (Carlisle & Meador, 2007). They also refine earlier findings
relating the amount of different land cover types to stream biota in the
mid-Atlantic region (e.g., King et al., 2005; Roth et al., 1996; Snyder
et al., 2005; Strayer et al., 2003) by focusing on continuous land cover
variables and metrics of landscape connectivity to the stream
network. Each of these studies, ours included, builds substantially
upon previous work (see for example Table 2 in Schueler, 1994) by
utilizing improved information on land cover, landscape configura-
tion, and stream biota.

The %ISAmaps, in particular, provided unique information relevant
to stream health assessments. These maps are not only more useful
than traditional land cover type approaches (see alsoDougherty et al.,
2004), but also provide information on the spatial configuration of
developed areas across the landscape, which has advantages for
assessing proximity to streams and for mapping changes in land use
intensity (Goetz et al., 2004; Jantz et al., 2005). The results presented
here further support management goals for reducing the impacts of
urbanization, particularly those associated with impervious cover in
new residential and commercial development. For example, the
pollutants and hydrological effects of urbanization associated with
impervious cover, discussed in the Introduction section, can be
partially offset through measures such as low impact development
techniques (retention ponds, green roofs, rain gardens) which capture
some pollutants and reduce overland flow, thereby benefiting stream
water quality and associated biotic health.

The results also indicate that consideration of landscape config-
uration (our weighting schemes) often improved predictions of
stream biota metrics at the catchment sampling points. This was
particularly true for the aggregated catchments, where the most
downstream MBSS sampling point integrated those from further
upstream. Weighting the landscape by distance to stream and the
amount (and location) of tree cover improved stream biota predictions
in some provinces better than others. Predictions of BIBI and NEPT in
the Coastal Plain and Highland provinces were significantly improved,
whereas those in the Piedmont province were not improved. We
note that the Piedmont is the most intensively developed region of
Maryland, and also the most extensively connected by storm drainage
systems to the stream network, which may diminish the buffering
effects of the landscape. The consistent selection of %ISA as a primary
predictor in this region supports the view that buffer zones may often
be bypassed by the storm drain system, effectively connecting the
developed landscape with the stream system. Additional research in
this area, particularly using paired watersheds, may be useful for
testing this hypothesis.

Subsurface flow may also modify the influence of landscape con-
figuration on stream measurements (Weller et al., 1998), however we
were unable to generalize how these would likely vary among the
physiographic provinces we considered. One might expect that the
sandy loams of the coastal plain would facilitate subsurface flow
more readily than in the Piedmont, but the former has less variable
topography than the latter or the Highland provinces. If groundwater
flow was an overriding factor that connects land cover to streams,
topography (and catchments defined by topography) would be less
important than landscape configuration. In this case we would expect
the landscapeweighting to have little significance in improvingmodel
fits in the coastal plain province, which was not the case.

We further note that the distance along stream appeared to be less
relevant to stream biota predictions than the distance from a given point
on the landscape to the stream channel. This suggests that in-stream
processesmaybe less critical in buffering upstream inputs as the buffering
processes across the landscape (e.g. vegetation cover density and
proximity to the stream network), although this is beyond what we can
address in the current study. If true, it is at least partly due to the more
efficient transport of a vector of degradation once it reaches the stream
channel. Notably, the landscapeweighting scheme that incorporated both
the influence of distance to stream and the presence and density of tree
cover (Fig. 4) was more effective than just the distance weighting alone,
indicating that both of these factors are important to consider in
assessments of land cover (and use) with stream properties.

As with previous studies summarized in the Introduction, these
results have practical implications. Maryland is one of the signato-
ries of the Chesapeake Bay Restoration Agreement (Chesapeake Bay
Program, 2000), which sets water quality improvement and increased
riparian buffer goals for the year 2010. Information on stream health is
used in a range of land use planning and resource management
activities (Roth et al., 2005). More broadly, the information contained
within the land cover maps we have produced, which are also now
nationally available as NLCD products, has utility for incorporating
landscape configuration information into large-area hydrological
models and for improving a range of watershed management efforts
(e.g.Wickham et al., 2005). It is important to keep in mind, however,
that we have developed statistical models capturing variability in
steam biota, broadly associated with stream ecosystem integrity and
aquatic health, not the causal mechanisms that underline these
observations. Impervious cover is treated here as a surrogate for a
series of physical and biological properties and processes that impact
streams and water quality. As such, it may act as an integrator of
multiple interacting variables, and thus provide a relatively simple
indicator with wide applicability, but the link is not directly causal and
can be masked in areas where, for example, point sources dominate
stream degradation. Thus, while percent impervious cover is a useful
index of urbanization extent in-stream catchments, our results do not
imply that reductions in impervious cover alone are sufficient for
protecting water quality. Many water quality degradation pathways
are associated with urbanization. Thus, management efforts that focus
on reducing impervious cover without addressing the overall rate and
pattern of urbanization might mitigate only a portion of the water
quality effects of urbanization. We are currently conducting similar
analyses using NLCD data sets in other regions in the eastern United
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States where stream biota data are available to assess this further,
and encourage additional studies on this topic. Regional and natio-
nal mapping efforts, and associated products, can uniquely inform envi-
ronmental policy related to human modification of the landscape, and
thus assessments of impacts on water quality and aquatic ecosystems.
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