Coastal Case Studies: Lessons Learned

MICKEY MARCUS

NEW ENGLAND ENVIRONMENTAL, INC. mmarcus@neeinc.com

Middlefield, CT Amherst, MA

How do you protect against Coastal Storms like Sandy?

You can't

Coastal engineering structures

Large rip rap

smaller rip rap

gabions

breakwatek

5,0E.2007

groynes

Deverment

THE R.

222

Seawalling rap

Sea wall

UNIX?

"Living Shorelines"

Beach replenishment

Stone+bioengineering

Photo by Wilkinson Ecological Design

Soft engineering not durable, but Permittable Bank restoration along tidal River

After one year, plants established, Starting to gain land.

Established coastal bank

Bank protection using coir fascines also known as "biologs"

Coir covered with "sacrificial sand" and planted with beach grass

Native plants are Becoming established

Coastal bank 1m erosion/year Little Compton, RI

Sprigs Installed

1.

After planting

Conditions after 10 years

Bank has naturalized

Beach Restoration-Spain

Dune restoration completed Removal of infrastructure

Dune Restoration

Secondary dunes

Dune Restoration, Bay of Biscay 2007

High coastal bank (MA)

Unconsolidated sand on 30m high coastal bank

Install baffle system, plant, then hydro-seed slope

Establishment period.

Use <u>flexible</u> mesh biodegradable fabric to capture sand and to protect establishing vegetation

After one year of growth

One year after establishment

After two years

Completed slope after two years

Rock Toe of slope, covered with sand

Creating wooden staging to prevent slope erosion during planting

Installation of baffles & dune plants

Hydro-seed slope with native seed mix

Completed: June, 2008

Site after one year (August, 2009)

Connecticut River-Tidal bank Restoration 2013

Darien salt marsh and coastal bank Restoration- 2001

Post construction: Salt marsh established Bank re-vegetated

Restore or give up?

Hard Engineering (reduce wave energy)

- Groynes
- Revetment
- Gabions
- Rip Rap
- Sea Wall
- Cliff Drains
- Breakwaters

Pros: Effective erosion control, long Life span Cons: high cost, poor esthetics

Soft Engineering:

- beach nourishment
- Bio-engineering
- Dune stabilization
- Living shorelines

Pros: good aesthetics, wildlife use, low cost, easier to permit

Cons: cannot endure severe storms

Oakwood Beach, NY Response to Sandy: buyout

remove infrastructure

Create wetland

Mitigation bank

Ecological Restoration thoughts:

do no harm! Plan ahead with defined goals/targets don't force restoration use natural processes restore ecological trajectory Build in ecosystem stability Use Reference ecosystems

Comments/Questions?

Mickey Marcus

mmarcus@neeinc.com

www.neeinc.com

