Living Shoreline Workshop

Some Engineering Considerations

Sponsored by:

UCONN ... NOAA ... CLEAR ... CT Sea Grant ...DEEP ...GEI Consultants

January 9, 2015

Thoughts by: John C. Roberge, P.E.

Engineering Responsibilities

- Site Assessment
 - Identify cause and extent of shoreline damage
 - Characterize the site conditions
- Design of Shoreline Repairs
 - Slope stability
 - Required vegetation
 - Structural elements, if required
- Regulatory Coordination
 - Pre-application meeting
 - Prepare permit applications
- Construction Oversight

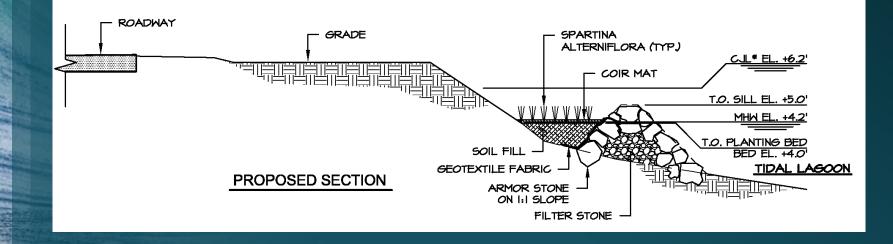
What is important to the Engineering Design to Maximize Success

- Wave Climate
- Soil Characteristics
- Design Slope Constraints
- Rely on Past Experience
- Selection of Proper Vegetation We typically need HELP !
- Other Site Constraints ICE

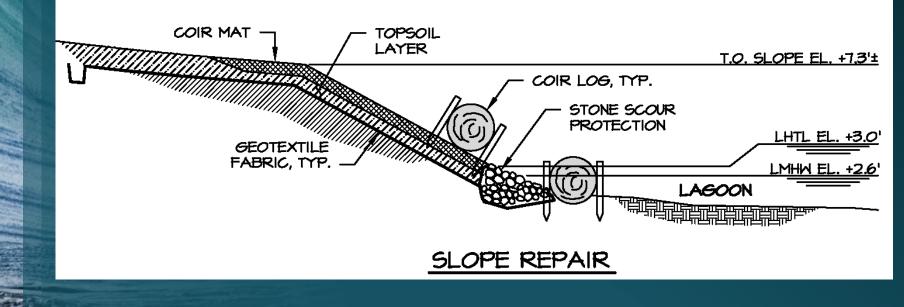
Historical Perspective: Industry Experience with Living

Shorelines

- Chesapeake Bay Foundation
- Maryland DNR
- US Army Corps of Engineers
 - Bio-solutions / Vegetated Shoreline Successful at Sites with < 2 mile fetch exposure – 2' height, 2.5 sec wave
 - Hybrid Solutions Include Structural Toe protection at Sites with 2mile fetch
 - Structural Solutions required at sites with > 2 fetch
 - No experience at sites experiencing ice flows


Recent RACE Design Experience in LIS

- Lagoon System :
 Southport, CT
 - Post –Sandy Damage
 - Historical Ice Cover
 - Naturally Vegetated
 - Historical Eroded
 Shoreline Fringe
 - Tide Gate Controlled


Developmental Phase : Proposed Living Shoreline Site Improvements

- Limited Fetch Minimum Wave Energy
- Site Highly Impacted by Winter Ice
- Concept Supported By DEEP
- Cost \$600 / If

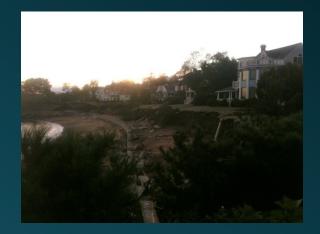
Actual Design and Construction Phase: Reality Sets In !

- Modified Design Costs Too High
 - Design Modifications Accommodates Ice Flows
 - DEEP Follow-up and Approval
- Decreased Costs \$250 / If

Post – Construction Success

Construction

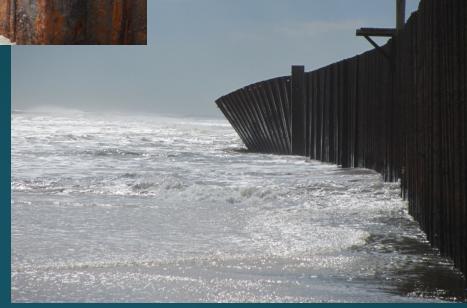
• Current


Recent Experience of DOCKO, Inc.

CT River Sites - Need to Accommodate Ice Conditions

ALTERNATIVE COASTAL STABILIZATION

- Structures can impact habitat, erosion conditions, wave reflections, etc.
 - Examples:
 - Seawalls
 - Bulkheads
 - Revetments
 - Dunes
 - Vegetated Slopes



Pre-Storm

UTILIZING A SHORELINE FLOOD & EROSION CONTROL STRUCTURE TO PROTECT PROPERTY AND REMAP FLOOD ZONES

Highly regulated....

- State of Connecticut Department of Energy and Environmental Protection (DEEP)
- US Army Corps of Engineers
- Local P&Z

Shoreline Flood & Erosion Control "Structures"

- Repairs to existing structures can be authorized – bulkheads, seawalls, revetments
- New structures will only be considered if necessary, unavoidable, and there is no feasible less environmentally damaging solution for protection of:
 - Infrastructure (roads, utilities)
 - Water-dependent uses (marinas, terminals)
 - Inhabited structures constructed prior to 1995
 - Cemeteries

Shoreline Flood & Erosion Control Measures

 What are "feasible, less environmentally damaging alternatives"?

Structure relocation – Not Always Possible

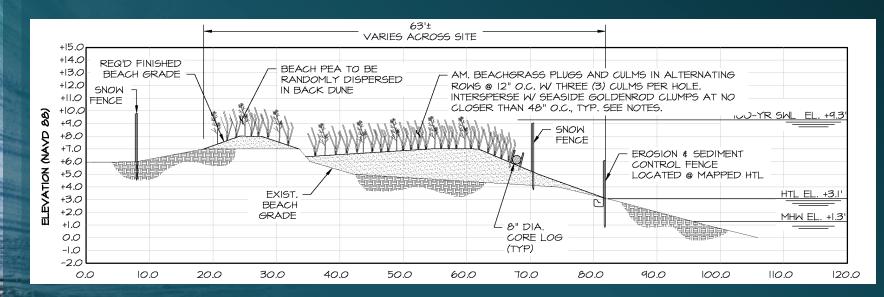
- Structure elevation Not Always Necessary
- Dune creation Sometimes Attractive
- Living shoreline –Low Energy Sites
 - This is a work in progress and clear direction and guidance on what the DEEP will accept as a "living shoreline" does not exist.

BULKHEADS – High Energy Site

RIGHT WAY TO ANCHOR....

WRONG WAY TO ANCHOR....

SEAWALLS – Total Structural Alternative



DUNE STABILIZATION

COASTAL STRUCTURES – VEGETATED SLOPES

LIVING SHORELINE

Questions?

