Climate Change & Extreme Weather Pilot Project

OFFICE OF STRATEGIC PLANNING AND PROJECTS CONNECTICUT DEPARTMENT OF TRANSPORTATION

Project Background/Scope

and the server and the server and the

- Work began in Spring 2013
- Least data available for structures in NWCT
 Historically more susceptible to extreme weather events
- Structures between 6 and 20 feet long
- Sensitivity analyses of structures at a systems level & criticality assessment
- Chose a primary climate stressor
 Increased precipitation from major storm events
 - Increased water flow through structures

Methods

• Dual Approach:

• Hydraulic Evaluations

 Context based evaluation of adaptive capacity of structures: sensitivity analyses

o Criticality Assessment

 Analysis of social, spatial, and hydraulic factors to determine relative levels of risk to each structure

Data Gathering/Analysis

Sensitivity Analyses:

• Bridge assessments and field studies

- o 60 were reviewed in the field
- o 52 of the structures were selected for further evaluation
- Hydrologic calculations for sensitivity analyses

Criticality Assessment:

- Combined hydraulic assessments with spatial and social considerations
 - Traffic and road data from HPMS
 - FEMA flood zones
 - Emergency facilities
 - Scour critical structures
 - Census- Including At-Risk Populations

Low Adaptive Capacity Structure Barkhamsted- Route 44

High Adaptive Capacity Structure Morris- Route 109

Legend

0.2 0.4

0

Criticality Matrix

Structure: 06712 **Location:** Watertown

Year Built: 1966 Criticality Ranking: 4

	Very Low to Low			Moderate				Critical to Very Critical		
	1	2	3	4	5	6	7	8	9	10
Hydraulic	High adaptive capacity			Moderate adaptive capacity				Low adaptive capacity		
	No history of closure			History of pariodic clasures			Significant history of closure			
				Thistory of periodic closores				Scour critical		
	Satisfies WSE criteria			Adjacent to scour critical structures				Does not satisfy WSE criteria		
Spatial	Outside FEMA flood zones			Within 500 year FEMA flood zone				Within 100 year FEMA flood zone		
	Low concentration of			Moderate concentration of				High concentration of		
	impervious surfaces			impermeable surfaces				impermeable surfaces		
Social	Low ADT & V/C			Moderate ADT & V/C				High ADT & V/C		
	0-4 accidents			5 or more accidents				Emergency route		
	Non-NHS, non-emergency route			NHS route				Emergency services cluster		

Study Structures: Criticality Scores

Lessons Learned

Other factors identified as important to a structure's resiliency:

• Scour

- Mapped scour critical structures
- Velocity during storm events contributes to scour
- Susceptibility to debris accumulation
- Excessive backwater, i.e. upstream pooling
- Precipitation projections
 - Precip.net vs. TP-40
 - Broad percentages vs. incremental increases
 - Incremental increases better gauge adaptive capacity

Example of bridge scour, New Milford

Results

- 34 study structures satisfy design water surface elevation criteria
 - 13 of those vulnerable to scour
- 18 study structures do not satisfy the hydraulic design criteria
- 14 structures are critical, 12 of those lack adaptive capacity

Identify priorities for structure replacementCreate a mechanism to alert officials of critical structures

Thank you

Project Contacts

Michael Hogan

Michael.Hogan@ct.gov

David Elder

David.Elder@ct.gov

Stephanie Molden

Stephanie.Molden@ct.gov